MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules

نویسندگان

  • L M Parysek
  • J J Wolosewick
  • J B Olmsted
چکیده

The cytological distribution of microtubule-associated protein 4 (MAP 4) (L. M. Parysek, C. F. Asnes, J. B. Olmsted, 1984, J. Cell Biol., 99:1309-1315) in mouse tissues has been examined. Adjacent 0.5-0.9-micron sections of polyethylene glycol-embedded tissues were incubated with affinity-purified MAP 4 or tubulin antibodies, and the immunofluorescent images were compared. Tubulin antibody labeling showed distinct microtubules in all tissues examined. MAP 4 antibody also labeled microtubule-like patterns, but the extent of MAP 4 reactivity was cell type-specific within each tissue. MAP 4 antibody labeled microtubules in vascular elements of all tissues and in other cells considered to have supportive functions, including Sertoli cells in the testis and glial elements in the nervous system. Microtubule patterns were also observed in cardiac, smooth, and skeletal (eye) muscle, podocytes in kidney, Kuppfer cells in liver, and spermatid manchettes. The only MAP 4-positive cells in which the pattern was not microtubule-like were the principal cells of the collecting ducts in kidney cortex, in which diffuse fluorescence was seen. MAP 4 antibody did not react with microtubule-rich neuronal elements of the central and peripheral nervous system, skeletal muscle from anterior thigh, liver parenchymal cells, columnar epithelial cells of the small intestine, and absorptive cells of the tubular component of the nephron. These observations indicate that MAP 4 may be associated with only certain kinds of cell functions as demonstrated by the preferential distribution with microtubules of defined cell types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory

In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Influence of taxol and CNTs on the stability analysis of protein microtubules

Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...

متن کامل

MAP 4: occurrence in mouse tissues

A polyclonal antiserum to a microtubule-associated protein (MAP) from mouse neuroblastoma cells (MAP 4) was used to examine the distribution of this protein in mouse tissues. Immunoblots of neuroblastoma cell microtubule protein preparations demonstrated that the antiserum reacted with a triplet of proteins at 215,000-240,000 mol wt. Antibodies affinity purified from any of the bands showed cro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1984